Онлайн
библиотека книг
Книги онлайн » Разная литература » Будущее без работы. Технология, автоматизация и стоит ли их бояться - Даниэль Сасскинд

Шрифт:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 99
Перейти на страницу:
которые выполняли бы такие задачи, в этом случае слабее, чем где-либо еще. Именно поэтому Институт фискальных исследований, ведущий аналитический центр Великобритании, выразил обеспокоенность тем, что повышение минимальной заработной платы может увеличить риск автоматизации[309]. Если за труд низкооплачиваемых работников будут платить больше, то их замена машинами, которые прежде были слишком дороги, теперь может обрести финансовый смысл. Это тем более справедливо для низкооплачиваемых работников, выполняющих относительно «рутинные» задачи, например кассиров и секретарей на ресепшенах.

Относительные издержки могут помочь объяснить и странные случаи отказа от технологий. Возьмем для примера упадок британских механических автомоек, установленных в придорожных гаражах. С 2000 по 2015 год их количество сократилось более чем в два раза (с 9000 до 4200). Сегодня в подавляющем большинстве случаев автомобили в стране моют вручную. Почему автоматика в этой сфере включила задний ход? Ассоциация автомоек винит в этом, в частности, иммиграцию. В 2004-м в Европейский Союз вступили десять восточноевропейских стран, мигранты из них работали за такую низкую зарплату, что оказалось дешевле использовать их труд, а не более производительные – дорогие – механические автомойки. В этом случае люди фактически сумели вытеснить машины[310].

Возможно, интереснее всего относительные издержки проявились в международной сфере. Различия в издержках между странами могут отчасти объяснить, почему в прошлом новые технологии применялись в мире столь неравномерно. Например, одна из главных загадок экономической истории состоит в том, почему промышленная революция произошла в Великобритании, а не, скажем, во Франции или в Германии. Историк экономики Роберт Аллен считает, что это обусловлено относительными издержками: в то время в стране зарплаты рабочих были намного выше, чем в других странах, а цены на энергоносители – крайней низкими. Таким образом, в Великобритании внедрение новых машин, экономящих рабочую силу и использующих легкодоступное дешевое топливо, имело экономический смысл, а в других странах – нет[311].

Кроме того, относительные издержки могут объяснить, почему и в будущем новые технологии будут применяться в мире неравномерно. Возьмем, к примеру, Японию: неслучайно прогресс в области медицинской робототехники там был особенно быстрым. Доля пожилых людей в этой стране – одна из самых высоких в мире: более 25 % японцев старше 65 лет, трудоспособное население ежегодно сокращается на 1 %, а неприязнь местных жителей к найму мигрантов на работу в государственных учреждениях хорошо известна. В результате в стране не хватает медсестер и медицинских работников (ожидается, что к 2025 году их дефицит достигнет примерно 380 тысяч человек), что стимулирует работодателей автоматизировать их труд[312]. Вот почему такие роботы, как Паро, упомянутый выше терапевтический робот-тюлень, Робер, способный переносить неподвижных пациентов из ванны в постель, и Палро, андроид, который может преподавать танцы, разрабатываются и внедряются в Японии, тогда как в других странах на них смотрят с недоумением и неодобрением[313]. Подобные ситуации можно наблюдать повсюду: государства, где население стареет быстрее, как правило, вкладывают больше средств в автоматизацию. Одно исследование показало, что увеличение на 10 % доли работников старше 56 лет относительно работников в возрасте от 26 до 55 лет сопровождалось увеличением числа роботов на 0,9 на тысячу рабочих. В 2014 году в США было всего 9,14 промышленных роботов на тысячу рабочих, что намного ниже, чем, например, в Германии с ее 16,95 роботов на тысячу рабочих, но если бы в США была такая же демография, как в Германии, то разница была бы на 25 % меньше[314].

График 5.4. Стоимость миллиона вычислений в 1850–2006 годах (в долларах 2006 года)

Тем не менее, хотя страны, регионы и отдельные части экономики могут различаться по относительным издержкам, все они движутся в одном направлении. В различных условиях новые технологии не просто становятся мощнее, но и во многих случаях доступнее. Рассмотрим стоимость вычислений: как показано на графике 5.4[315], она резко упала во второй половине XX века, что является зеркальным отражением взрыва вычислительной мощности того времени (здесь ось Y тоже имеет логарифмическую шкалу, где один шаг вниз представляет десятикратное снижение стоимости, два – стократное снижение и т. д.).

Майкл Спенс, лауреат Нобелевской премии по экономике, подсчитал, что во второй половине XX века стоимость вычислительной мощности упала примерно в десять миллиардов раз[316]. Такие яркие и устойчивые тенденции наблюдаются во всех сферах экономики, как бы сильно ни различались относительные издержки.

Разные правила, разные культуры

Последняя причина, по которой машины будут распространяться с разной скоростью в разных местах, связана не с экономикой, а с нормативной и культурной средой, где внедряются новые технологии. Регулятивная сторона этого процесса постоянно меняется: например, за последние несколько лет почти все развитые страны в том или ином виде опубликовали свои «стратегии ИИ», где определили пути развития этой области. Китай обнародовал план достижения «лидерства» в сфере ИИ к 2030 году, где говорится, что исследования должны проводиться «везде и в любой момент»[317]. Президент Владимир Путин заявил: «Тот, кто станет лидером в этой сфере [ИИ], будет властелином мира»[318]. Подобные амбиции означают, что формальная регулятивная среда, где разрабатываются и применяются эти новые технологии, привлекает все больше внимания.

Однако реакция самих людей на эти новые технологии и культура, порождаемая нововведениями, не менее важны, чем намерения государства. Например, одно исследование 2018 года показало, что для большинства американцев «неприемлемо» использование алгоритмов для уведомлений об условно-досрочном освобождении, просмотра заявлений о приеме на работу, анализа видеозаписей собеседований или присвоения личных финансовых оценок на основе потребительских данных[319]. В том же году около четырех тысяч сотрудников Google подписали петицию против планов компании предоставить Пентагону свои системы ИИ, способные интерпретировать видеоизображения для беспилотных летательных аппаратов, а некоторые из работников подали в отставку в знак протеста. Когда в 2016-м в Великобритании выяснилось, что компания DeepMind заключила сделку с тремя больницами и получила доступ к 1,6 млн медицинских карт пациентов, это вызвало серьезное беспокойство общественности, а Управление уполномоченного по информации начало официальное расследование[320]. В каждом случае сопротивление могло быть вызвано разными причинами, но результат один и тот же: освоение новых технологий замедляется. И хотя случаи в США и Великобритании затрагивали весьма щекотливые вопросы, важно понимать, что даже самые безобидные технологии могут привлечь культурный консерватизм с аналогичным эффектом. Например, после изобретения стетоскопа в 1816 году прошло два десятилетия, прежде чем его начали регулярно использовать врачи, не желавшие, чтобы «между их исцеляющими руками и пациентом» встал инструмент[321].

История

1 ... 25 26 27 28 29 30 31 32 33 ... 99
Перейти на страницу: